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Programme PSI/MP 2022 (LIEN) 

Id Compétence développée Connaissances associées 

B2-10 
Déterminer les caractéristiques 
d'un solide ou d'un ensemble de 

solides indéformables. 

Solide indéformable :  – définition ;  – repère ;  – 
équivalence solide/repère ; – volume et masse ; – 

centre d'inertie ; – matrice d'inertie. 

C1-05 

Proposer une démarche 
permettant la détermination 

d’une action mécanique 
inconnue ou d'une loi de 

mouvement. 

Graphe de structure. Choix des isolements. 
Choix des équations à écrire pour appliquer le 

principe fondamental de la statique ou le principe 
fondamental de la dynamique dans un référentiel 

galiléen. Théorème de l'énergie cinétique. 

C2-08 

Déterminer les actions 
mécaniques en dynamique dans 

le cas où le mouvement est 
imposé. 

Torseurs cinétique et dynamique d’un solide ou d’un 
ensemble de solides, par rapport à un référentiel 

galiléen. Principe fondamental de la dynamique en 
référentiel galiléen. Énergie cinétique. Inertie et 

masse équivalentes. Puissance d'une action 
mécanique extérieure à un solide ou à un ensemble 

de solides, dans son mouvement par rapport au 
repère galiléen. Puissance intérieure à un ensemble 

de solides. Théorème de l'énergie cinétique. 
Rendement en régime permanent. 

C2-09 
Déterminer la loi de 

mouvement dans le cas où les 
efforts extérieurs sont connus. 

  

Mécanique 

MECA2 - Dynamique 

https://www.dropbox.com/s/nia6lgjc5m7lgv5/Programme.pdf?dl=0
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Caractéristiques des solides 

Masse 

𝑀ሺ𝐸ሻ = න 𝑑𝑚
𝐸

= න 𝜌ሺ𝑀ሻ𝑑𝑉
𝐸

 

Moments d’inertie d’un solide 

 Moment d’inertie par rapport au point O 

𝐼𝑂 = න𝑂𝑀ሬሬሬሬሬሬԦ2𝑑𝑚
𝑆

= නሺ𝑥2 + 𝑦2 + 𝑧2ሻ𝑑𝑚
𝑆

 

Moment d’inertie par rapport à l’axe ∆ 

𝐼∆ = න𝑑ሺ𝑀ሻ2𝑑𝑚
𝑆

 

Théorème de Huygens :  

𝐼∆ሺ𝑆ሻ = 𝐼∆𝐺
ሺ𝑆ሻ + 𝑚ሺ𝑆ሻ𝑑2 

⇒ 𝐼∆ሺ𝑆ሻ ≥ 𝐼∆𝐺
ሺ𝑆ሻ 

 
Moments d’inertie par rapport aux axes du repère 

𝐼𝑂𝑥
= නሺ𝑦2 + 𝑧2ሻ𝑑𝑚

𝑆

 𝐼𝑂𝑦
= නሺ𝑥2 + 𝑧2ሻ𝑑𝑚

𝑆

 𝐼𝑂𝑧
= නሺ𝑥2 + 𝑦2ሻ𝑑𝑚

𝑆

 

 

Centre de gravité ou d’inertie d’un solide 

 
Méthode Intégrale 

න 𝐺𝑀ሬሬሬሬሬሬԦ𝑑𝑚
𝐸

= 0ሬԦ 
Méthode sous-volumes 

𝐸 = 𝐸1 ∪ 𝐸2 ∪ … ∪ 𝐸𝑛 

𝐸𝑖 ∩ 𝐸𝑗 = Ø ∀𝑖 ≠ 𝑗 

𝑂𝐺ሬሬሬሬሬԦ =
𝑚1𝑂𝐺1

ሬሬሬሬሬሬሬሬԦ + 𝑚2𝑂𝐺2
ሬሬሬሬሬሬሬሬԦ + ⋯ + 𝑚𝑛𝑂𝐺𝑛

ሬሬሬሬሬሬሬሬԦ

𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛
 

 

𝑂𝐺ሬሬሬሬሬԦ =
1

𝑚
න 𝑂𝑀ሬሬሬሬሬሬԦ

𝐸

𝑑𝑚 

𝑋𝐺 =
1

𝑚
න 𝑥𝑑𝑚

𝐸

 𝑌𝐺 =
1

𝑚
න 𝑦𝑑𝑚

𝐸

 𝑍𝐺 =
1

𝑚
න 𝑧𝑑𝑚

𝐸

 

 
Masses négatives pour formes creuses Si 𝜌 = 𝑐𝑠𝑡 :  

Remplacer 𝑚 par 𝑉 et 𝑑𝑚 par 𝑑𝑉 
𝐺 est sur les éléments de symétrie volumique 
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Représentation physique des termes de 𝑰ሺ𝑨, 𝑺ሻ 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 𝝎𝒙𝒙ሬሬሬሬԦ 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 

𝑴𝒛𝒔ሬሬሬԦ 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 

𝑥𝑠ሬሬሬԦ 

𝑦𝑠ሬሬሬԦ 

𝐴 

Même 𝑨 
𝑭 ≠ 𝟎 

Même 𝑨 
𝑭 = 𝟎 

On voit 3 théorèmes de Huygens pour le 
déplacement des moments d’inertie 

autour des axes ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ, ሺ𝐴, 𝑦𝑠ሬሬሬԦሻ et ሺ𝐴, 𝑧𝑠ሬሬሬԦሻ 
𝐼𝐴

𝑥 = 𝐼𝐺
𝑥 + 𝑚ሺ𝑏2 + 𝑐2ሻ = 𝐼𝐺

𝑥 + 𝑚𝑑𝑥
2 

𝐼𝐴
𝑦

= 𝐼𝐺
𝑦

+ 𝑚ሺ𝑎2 + 𝑐2ሻ = 𝐼𝐺
𝑦

+ 𝑚𝑑𝑦
2 

𝐼𝐴
𝑧 = 𝐼𝐺

𝑧 + 𝑚ሺ𝑎2 + 𝑏2ሻ = 𝐼𝐺
𝑧 + 𝑚𝑑𝑧

2 
 

 

Théorème de Huygens généralisé 

𝐴𝐺ሬሬሬሬሬԦ = 𝑎𝑥𝑆ሬሬሬԦ + 𝑏𝑦𝑆ሬሬሬሬԦ + 𝑐𝑧𝑆ሬሬሬԦ = [
𝑎
𝑏
𝑐

]

𝔅𝑆

 

𝐼ሺ𝐴, 𝑆ሻ = 𝐼ሺ𝐺, 𝑆ሻ + 𝑚 [
𝑏2 + 𝑐2 −𝑎𝑏 −𝑎𝑐

−𝑎𝑏 𝑎2 + 𝑐2 −𝑏𝑐
−𝑎𝑐 −𝑏𝑐 𝑎2 + 𝑏2

]

𝔅𝑆

 

𝝎𝒙𝒙ሬሬሬሬԦ 

Soit un cylindre (rayon 𝑅, matrice 𝐼ሺ𝐺, 𝑆ሻ = [
𝐴 −𝐹 −𝐸

−𝐹 𝐵 −𝐷
−𝐸 −𝐷 𝐶

]

𝔅𝑆

), roulant autour de 

ሺ𝐴, 𝑧𝑠ሬሬሬԦሻ soumis à la gravité et à la force tangentielle 𝑇 au contact en 𝐴. On a : 𝐶𝜃ሷ = −𝑅𝑇 

Termes diagonaux : Ils représentent la « masse » (quantité et distance) à mettre en rotation pour 

tourner l’objet autour des 3 axes ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ, ሺ𝐴, 𝑦𝑠ሬሬሬԦሻ et ሺ𝐴, 𝑧𝑠ሬሬሬԦሻ, soit l’inertie autour de ces 3 axes. Ils 

interviennent dans les équations différentielles du mouvement en rotation. 

Termes hors diagonaux : Ils représentent la répartition des masses autour des axes ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ, ሺ𝐴, 𝑦𝑠ሬሬሬԦሻ et 
ሺ𝐴, 𝑧𝑠ሬሬሬԦሻ. Ils interviennent dans les actions en moment dans les liaisons. 
Exemple : 
 
 
 
 
 
Ils sont à l’origine de l’apparition de moments lors de leur rotation (𝜔 constante ou non) : 
 
 
 
 
 
 
 
 
 

Ex. Rotation  ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ : 𝐸 et 𝐹 (ligne colonne x) sont chacun générateurs de moments sur ሺ𝐴, 𝑦𝑠ሬሬሬԦሻ et ሺ𝐴, 𝑧𝑠ሬሬሬԦሻ  - cf. équilibrage 

Opérateur d’inertie d’un solide 

𝐼ሺ𝐴, 𝑆ሻ𝑢ሬԦ = න𝐴𝑀ሬሬሬሬሬሬԦ⋀൫𝑢ሬԦ⋀𝐴𝑀ሬሬሬሬሬሬԦ൯𝑑𝑚
𝑆

 

Soit 𝕭𝑺 une base ሺ𝒙𝑺ሬሬሬሬԦ, 𝒚𝑺ሬሬሬሬԦ, 𝒛𝑺ሬሬሬሬԦሻ liée au solide S étudié et A l’origine du repère 

𝐼ሺ𝐴, 𝑆ሻ =

ۏ
ێ
ێ
ێ
ێ
ێ
නሺ𝑦2ۍ + 𝑧2ሻ𝑑𝑚

𝑆

− න𝑥𝑦𝑑𝑚
𝑆

− න𝑥𝑧𝑑𝑚
𝑆

− න𝑥𝑦𝑑𝑚
𝑆

නሺ𝑥2 + 𝑧2ሻ𝑑𝑚
𝑆

− න𝑦𝑧𝑑𝑚
𝑆

− න𝑥𝑧𝑑𝑚
𝑆

− න𝑦𝑧𝑑𝑚
𝑆

නሺ𝑥2 + 𝑦2ሻ𝑑𝑚
𝑆 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

𝔅𝑆

= [
𝐴 −𝐹 −𝐸

−𝐹 𝐵 −𝐷
−𝐸 −𝐷 𝐶

]

𝔅𝑆

 

 

𝑂𝐺ሬሬሬሬሬԦ = [
𝑎
𝑏
𝑐

]

𝔅𝑆

; 𝑂′𝐺ሬሬሬሬሬሬሬԦ = [
𝑎′

𝑏′

𝑐′

]

𝔅𝑆

; 𝐴 = [
𝑏2 + 𝑐2 −𝑎𝑏 −𝑎𝑐

−𝑎𝑏 𝑎2 + 𝑐2 −𝑏𝑐
−𝑎𝑐 −𝑏𝑐 𝑎2 + 𝑏2

]

𝔅𝑆

; 𝐴′ = ቎
𝑏′2

+ 𝑐′2
−𝑎′𝑏′ −𝑎′𝑐′

−𝑎′𝑏′ 𝑎′2
+ 𝑐′2

−𝑏′𝑐′

−𝑎′𝑐′ −𝑏′𝑐′ 𝑎′2
+ 𝑏′2

቏

𝔅𝑆

 

𝐼ሺ𝑂′, 𝑆ሻ = 𝐼ሺ𝑂, 𝑆ሻ + 𝑚ሺ𝐴′ − 𝐴ሻ – Nécessité de connaître 𝐺 pour avoir 𝐴 et 𝐴′ 
 

Parfois notée ൦

𝐼𝐴
𝑥𝑥 𝐼𝐴

𝑥𝑦
𝐼𝐴

𝑥𝑧

𝐼𝐴
𝑥𝑦

𝐼𝐴
𝑦𝑦

𝐼𝐴
𝑦𝑧

𝐼𝐴
𝑥𝑧 𝐼𝐴

𝑦𝑧
𝐼𝐴

𝑧𝑧

൪

𝔅𝑆
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Symétries et forme de la matrice d’inertie – 𝑶 sur l’élément de symétrie 

 

 

 

 

 

 

 

Attention : on ne parle que de forme, les termes peuvent changer d’un point à l’autre 

ሺ𝑂, 𝑥𝑆ሬሬሬԦ, 𝑦𝑆ሬሬሬሬԦሻ 
Plan de symétrie 

de normale 𝑧𝑆ሬሬሬԦ 

Deux plans de symétrie parmi 
ሺ𝑂, 𝑥𝑆ሬሬሬԦ, 𝑦𝑆ሬሬሬሬԦሻሺ𝑂, 𝑥𝑆ሬሬሬԦ, 𝑧𝑆ሬሬሬԦሻ ሺ𝑂, 𝑦𝑆ሬሬሬሬԦ, 𝑧𝑆ሬሬሬԦሻ 

Axe de révolution 
ሺ𝑂, 𝑧𝑆ሬሬሬԦሻ 

𝐼ሺ𝑂, 𝑆ሻ = [
𝐴 −𝐹 0

−𝐹 𝐵 0
0 0 𝐶

]

𝔅𝑆

 𝐼ሺ𝑂, 𝑆ሻ = [
𝐴 0 0
0 𝐵 0
0 0 𝐶

]

𝔅𝑆

 
𝐼ሺ𝑂, 𝑆ሻ 

= [
𝐴 0 0
0 𝐴 0
0 0 𝐶

]

𝔅𝑆

 

𝐴 =
𝐶

2
+ න𝑧2𝑑𝑚

𝑆

 

∀𝔅ሺ_, _, 𝑧𝑆ሬሬሬԦሻ 

Solide sphérique de centre O Problème plan ሺ𝑂, 𝑥𝑆ሬሬሬԦ, 𝑦𝑆ሬሬሬሬԦሻ : 𝑧 = 0 

𝐼ሺ𝑂, 𝑆ሻ = [
𝐴 0 0
0 𝐴 0
0 0 𝐴

]

𝔅𝑆

 

𝐴 =
2

3
𝐼𝑂 ሺ𝑎𝑢𝑡𝑜𝑢𝑟 𝑑𝑒 𝑂ሻ 

∀𝔅𝑆 

𝐼ሺ𝑂, 𝑆ሻ = [
𝐴 −𝐹 0

−𝐹 𝐵 0
0 0 𝐴 + 𝐵

]

𝔅𝑆

 

 

Matrices d’inertie usuelles à savoir retrouver 

 

𝐼ሺ𝐺, 𝑆ሻ =

ۏ
ێ
ێ
ێ
ێ
ۍ

𝑚

12
ሺ𝑏2 + 𝑐2ሻ 0 0

0
𝑚

12
ሺ𝑎2 + 𝑐2ሻ 0

0 0
𝑚

12
ሺ𝑎2 + 𝑏2ሻے

ۑ
ۑ
ۑ
ۑ
ې

𝔅𝑆

 

 

𝐼ሺ𝐺, 𝑆ሻ =

ۏ
ێ
ێ
ێ
ێ
ێ
𝑚ۍ ቆ

𝑅2

4
+

ℎ2

12
ቇ 0 0

0 𝑚 ቆ
𝑅2

4
+

ℎ2

12
ቇ 0

0 0 𝑚
𝑅2

2 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

𝔅𝑆

 

Matrice inchangée dans toute base contenant l’axe de révolution 

 

𝐼ሺ𝐺, 𝑆ሻ =

ۏ
ێ
ێ
ێ
ێ
ۍ
2

5
𝑚𝑅2 0 0

0
2

5
𝑚𝑅2 0

0 0
2

5
𝑚𝑅2

ے
ۑ
ۑ
ۑ
ۑ
ې

𝔅𝑆

 

Masse ponctuelle 𝑆𝑖 en 𝑀𝑖 
 

𝑂𝑀𝑖
ሬሬሬሬሬሬሬሬԦ = [

𝑥𝑖

𝑦𝑖

𝑧𝑖

]

𝔅𝑆

 

 

𝐼ሺ𝑀𝑖, 𝑆𝑖ሻ = [
0 0 0
0 0 0
0 0 0

]

𝔅𝑆

 

 

𝐼ሺ𝑂, 𝑆𝑖ሻ = 𝑚𝑖 ቎

𝑦𝑖
2 + 𝑧𝑖

2 −𝑥𝑖𝑦𝑖 −𝑥𝑖𝑧𝑖

−𝑥𝑖𝑦𝑖 𝑥𝑖
2 + 𝑧𝑖

2 −𝑦𝑖𝑧𝑖

−𝑥𝑖𝑧𝑖 −𝑦𝑖𝑧𝑖 𝑥𝑖
2 + 𝑦𝑖

2

቏

𝔅𝑆
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Moment d’inertie d’une masse ponctuelle 𝒎𝒊 en 𝑴 autour de l’axe ∆= ሺ𝑶, 𝒛ሬԦሻ 

 𝑑 = ඥ𝑥𝑖
2 + 𝑦𝑖

2 ሺ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑒 𝑀 à 𝑙′𝑎𝑥𝑒ሻ 

𝐼∆ = 𝑚𝑖 𝑑2 

Définition 

 
ሺ𝑂, 𝑥𝑠ሬሬሬԦሻ est l’un (des 3) axe(s) principaux d’inertie 

de ce solide en 𝑂 
𝐴∗ valeur propre, 𝑥𝑠ሬሬሬԦ vecteur propre 

En tout point du solide, il existe 3 axes principaux 
d’inertie associés aux vecteurs propres 

𝐼ሺ𝑂, 𝑆ሻ = [
𝐴∗ 0 0
0 𝐵 −𝐷
0 −𝐷 𝐶

]

𝔅𝑆

 

Conditions d’équilibrage dynamique 

 
Solide équilibré ? Actions dans les liaisons indépendantes de 𝜃, 𝜃ሶ , 𝜃ሷ  et 𝑡 

Le solide 𝑆 de centre de gravité 𝐺 est équilibré en rotation autour de ሺ𝑂, 𝑥𝑠ሬሬሬԦሻ si : 
1 : 𝐺 ∈ ሺ𝑂, 𝑥𝑠ሻ : Pas de force centrifuge, tournante 

2 : ሺ𝑂, 𝑥𝑠ሬሬሬԦሻ est un axe principal d’inertie de 𝑆 ሺ𝐸 = 𝐹 = 0ሻ en tout point 𝑂 sur l’axe : Pas de moments 
variables dans les liaisons 

Remarque : La condition 1 est nécessaire à la condition 2. 
Dès que la condition 1 est vérifiée, si la condition 2 est vérifiée en un point de l’axe, elle est vraie sur 

tout l’axe 

Opérations 

 

Changement de base 
𝐼ሺ𝑂, 𝑆ሻ𝐵2

= 𝑃−1𝐼ሺ𝑂, 𝑆ሻ𝐵1
𝑃 

𝑃−1 = 𝑃𝑇     ;      𝑃 matrice de passage de 𝐵1 à 𝐵2 

Moment d’inertie par rapport à l’axe ሺ𝐴, ∆ሻ 

𝐼∆ሺ𝑆ሻ = 𝛿Ԧ. 𝐼ሺ𝐴, 𝑆ሻ𝛿Ԧ     ;      ฮ𝛿Ԧฮ = 1 

𝜹ሬԦ et 𝑰ሺ𝑨, 𝑺ሻ exprimés dans la même base 

Moment d’inertie par rapport au point 𝐴 avec 𝐼ሺ𝐴, 𝑆ሻ =

[
𝐴 −𝐹 −𝐸

−𝐹 𝐵 −𝐷
−𝐸 −𝐷 𝐶

]

𝔅𝑆

: 𝐼𝐴 =
Tr 𝐼ሺ𝐴,𝑆ሻ

2
=

𝐴+𝐵+𝐶

2
 

Moment d’inertie autour d’un axe ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ avec 𝐼ሺ𝐺, 𝑆ሻ =

[
𝐴 −𝐹 −𝐸

−𝐹 𝐵 −𝐷
−𝐸 −𝐷 𝐶

]

𝔅𝑆

: 𝐼ሺ𝐴,𝑥𝑠ሬሬሬሬԦሻ = 𝐼𝐴
𝑥𝑥 = 𝐴 + 𝑚𝑑2 avec 𝑑 

distance entre ሺ𝐴, 𝑥𝑠ሬሬሬԦሻ et ሺ𝐺, 𝑥𝑠ሬሬሬԦሻ 

Matrice d’inertie d’un ensemble de solides en un même point 

 
𝐼ሺ𝐴, 𝑆ሻ = ෍ 𝐼ሺ𝐴, 𝑆𝑖ሻ

𝑁

𝑖=1

= ෍ ൦𝐼ሺ𝐺𝑖, 𝑆𝑖ሻ + 𝑚𝑖 ቎

𝑦𝑖
2 + 𝑧𝑖

2 −𝑥𝑖𝑦𝑖 −𝑥𝑖𝑧𝑖

−𝑥𝑖𝑦𝑖 𝑥𝑖
2 + 𝑧𝑖

2 −𝑦𝑖𝑧𝑖

−𝑥𝑖𝑧𝑖 −𝑦𝑖𝑧𝑖 𝑥𝑖
2 + 𝑦𝑖

2

቏

𝔅𝑆

൪

𝑁

𝑖=1

 ;  𝐴𝐺𝑖
ሬሬሬሬሬሬԦ = [

𝑥𝑖

𝑦𝑖

𝑧𝑖

]

𝔅𝑆

 

Masses négatives pour formes creuses 

Linéarité de l’intégrale 
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Cinétique - Dynamique 

Cinétique 

ሼ𝒞ሺ𝑆/𝑅0ሻሽ 

ە
۔

ۓ 𝑅𝑐
ሬሬሬሬԦሺ𝑆/𝑅0ሻ = න 𝑉ሬԦሺ𝑀, 𝑆/𝑅0ሻ𝑑𝑚

𝐸

𝜎Ԧሺ𝐴, 𝑆/𝑅0ሻ = න 𝐴𝑀ሬሬሬሬሬሬԦ⋀𝑉ሬԦሺ𝑀, 𝑆/𝑅0ሻ𝑑𝑚
𝐸 ۙ

ۘ

ۗ

𝐴

 

∀ሺ𝐴, 𝐵ሻ, 𝜎Ԧሺ𝐴, 𝑆/𝑅0ሻ = 𝜎Ԧሺ𝐵, 𝑆/𝑅0ሻ + 𝐴𝐵ሬሬሬሬሬԦ⋀𝑅𝑐
ሬሬሬሬԦሺ𝑆/𝑅0ሻ 

 

ቊ
𝑅𝑐
ሬሬሬሬԦሺ𝑆/𝑅0ሻ = 𝑀𝑉ሬԦሺ𝐺, 𝑆/𝑅0ሻ

𝜎Ԧሺ𝐴, 𝑆/𝑅0ሻ = 𝐼ሺ𝐴, 𝑆ሻ𝛺ሬԦሺ𝑆/𝑅0ሻ + 𝑀𝐴𝐺ሬሬሬሬሬԦ⋀𝑉ሬԦሺ𝐴, 𝑆/𝑅0ሻ
ቋ

𝐴

 

 

ሼ𝒞ሺ𝐸/𝑅0ሻሽ = ෍ሼ𝒞ሺ𝑆𝑖/𝑅0ሻሽ

𝑁

𝑖=1

 

Dynamique 

ሼ𝒟ሺ𝑆/𝑅0ሻሽ 

ە
۔

ۓ 𝑅𝑑
ሬሬሬሬԦሺ𝑆/𝑅0ሻ = න 𝛤Ԧሺ𝑀, 𝑆/𝑅0ሻ𝑑𝑚

𝐸

𝛿Ԧሺ𝐴, 𝑆/𝑅0ሻ = න 𝐴𝑀ሬሬሬሬሬሬԦ⋀𝛤Ԧሺ𝑀, 𝑆/𝑅0ሻ𝑑𝑚
𝐸 ۙ

ۘ

ۗ

𝐴

 

∀ሺ𝐴, 𝐵ሻ, 𝛿Ԧሺ𝐴, 𝐸/𝑅0ሻ = 𝛿Ԧሺ𝐵, 𝑆/𝑅0ሻ + 𝐴𝐵ሬሬሬሬሬԦ⋀𝑅𝑑
ሬሬሬሬԦሺ𝑆/𝑅0ሻ 

൞

𝑅𝑑
ሬሬሬሬԦሺ𝑆/𝑅0ሻ = 𝑀𝛤Ԧሺ𝐺, 𝑆/𝑅0ሻ

𝛿Ԧሺ𝐴, 𝑆/𝑅0ሻ =
𝑑𝜎Ԧሺ𝐴, 𝑆/𝑅0ሻ

𝑑𝑡
ቇ

𝑅0

+ 𝑀𝑉ሬԦሺ𝐴, 𝑆/𝑅0ሻ⋀𝑉ሬԦሺ𝐺, 𝑆/𝑅0ሻ
ൢ

𝐴

 

ሼ𝒟ሺ𝐸/𝑅0ሻሽ = ෍ሼ𝒟ሺ𝑆𝑖/𝑅0ሻሽ

𝑁

𝑖=1

 

Principe Fondamental de la Dynamique 
PFD 

 
Théorème de la résultante dynamique TRD :  𝑀𝛤Ԧ൫𝐺, 𝐸/𝑅𝑔൯ = 𝑅ሬԦ𝐸→𝐸 

Théorème du moment dynamique TMD : 𝛿Ԧ൫𝐴, 𝐸/𝑅𝑔൯ = 𝑀𝐴
ሬሬሬሬሬԦ

𝐸→𝐸 

PFD 

൛𝒟൫𝐸/𝑅𝑔൯ൟ = ൛𝒯൫𝐸 → 𝐸൯ൟ 

6 équations 
par isolement 

 

Actions de liaisons de travail nul 
Equations différentielles du mouvement + action exerçant un travail 
 

Cas particuliers d’un solide indéformable en … 

𝑡Ԧ dans une direction fixe 𝑢ሬԦ 
𝑇𝑅𝐷 𝑠𝑢𝑟 𝑢ሬԦ: 𝐹 = 𝑚𝑎 

𝑟Ԧ autour d’un axe ሺ𝐴, 𝑢ሬԦሻ de direction 𝑢ሬԦ fixe d’inertie 𝐽 autour de ሺ𝐴, 𝑢ሬԦሻ 

𝑇𝑀𝐷 𝑠𝑢𝑟 ሺ𝐴, 𝑢ሬԦሻ ∶  𝐶 = 𝐽𝜃ሷ  

Remarques 

 

Théorème des actions réciproques 
ሼ𝒯ሺ𝐸2 → 𝐸1ሻሽ = −ሼ𝒯ሺ𝐸1 → 𝐸2ሻሽ 

Imposer un mouvement dans une liaison 
revient à imposer une action mécanique 
inconnue. On ne peut imposer effort et 

mouvement en même temps 

Simplification du PFD en moment (TMD) sur un axe en 𝐺 ou 𝐴 fixe : σ 𝑀𝐴,𝐹𝑆ഥ→𝑆
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ . 𝑢ሬԦ = 𝛿Ԧሺ𝐴, 𝑆/𝑅0ሻ. 𝑢ሬԦ 

ሺ𝑢𝑣ሻ′ = 𝑢𝑣′ + 𝑢′𝑣     ;      𝑢 = 𝜎Ԧሺ𝐺, 𝑆/𝑅0ሻ     ;      𝑣 = 𝑢ሬԦ 

𝜹ሬሬԦሺ𝑮, 𝑺/𝑹𝟎ሻ. 𝒖ሬሬԦ =
𝒅𝝈ሬሬԦሺ𝑮,𝑺/𝑹𝟎ሻ

𝒅𝒕
ቁ

𝑹𝟎

. 𝒖ሬሬԦ =
𝒅𝝈ሬሬԦሺ𝑮,𝑺/𝑹𝟎ሻ.𝒖ሬሬԦ

𝒅𝒕
− 𝝈ሬሬԦሺ𝑮, 𝑺/𝑹𝟎ሻ.

𝒅𝒖ሬሬԦ

𝒅𝒕
ቁ

𝑹𝟎

 avec 
𝑑𝑢ሬሬԦ

𝑑𝑡
ቁ

𝑅0

= 0ሬԦ si axe fixe 

Masse ponctuelle en 𝐺 : 𝜎Ԧሺ𝐺, 𝑆/𝑅0ሻ = 𝛿Ԧሺ𝐺, 𝑆/𝑅0ሻ = 0ሬԦ 

Négliger les masses : 𝑅𝑐
ሬሬሬሬԦ = 𝑅𝑑

ሬሬሬሬԦ = 0ሬԦ - 𝐼ሺ𝑀, 𝑆ሻ cst - 𝜎Ԧ et 𝛿Ԧ simplifiées 
Négliger les inerties : 𝐼ሺ𝐺, 𝑆ሻ = matrice nulle 
Négliger les deux : ሼ𝒞ሺ𝑆/𝑅0ሻሽ = ሼ𝒟ሺ𝑆/𝑅0ሻሽ = ሼ0ሽ 

PFD comparable à PFS 
Autant d’équations – Mêmes isolements 
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Energie - Puissance 

Energie cinétique 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
න 𝑉ሬԦ2ሺ𝑀, 𝑆/𝑅0ሻ

𝐸

𝑑𝑚 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
𝑀𝑉ሬԦ2ሺ𝐺, 𝑆/𝑅0ሻ +

1

2
𝛺ሬԦሺ𝑆/𝑅0ሻ. ൣ𝐼ሺ𝐺, 𝑆ሻ𝛺ሬԦሺ𝑆/𝑅0ሻ൧ 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
𝑀𝑉ሬԦ2ሺ𝐺, 𝑆/𝑅0ሻ +

1

2
𝛺ሬԦሺ𝑆/𝑅0ሻ. 𝜎Ԧሺ𝐺, 𝑆/𝑅0ሻ 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
൛𝒞𝑆/𝑅0

ൟ⨀൛𝒱𝑆/𝑅0
ൟ ∀𝑃 

𝑇ሺ𝐸/𝑅0ሻ = ෍ 𝑇ሺ𝑆𝑖/𝑅0ሻ

𝑁

𝑖=1

 

Mouvements plans 

Translation de vitesse 𝑉 
Rotation 𝛺 d’axe fixe ሺ𝐴, 𝑧Ԧሻ 

Distance de G à l’axe ሺ𝐴, 𝑧Ԧሻ : 𝑅 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
𝑀𝑉2 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
𝑀𝑅2𝛺2 +

1

2
𝐼𝑧𝑧

𝐺 𝛺2 

𝑇ሺ𝑆/𝑅0ሻ =
1

2
𝛺2𝐼𝑧𝑧

𝐴  

Translation + Rotation : Somme des Ec des mvt indépendants 

 

Puissance 

Puissance des actions extérieures 

𝑃ሺ𝑆ҧ → 𝑆/𝑅0ሻ = ሼ𝒯𝑆ҧ→𝑆ሽ⨀ሼ𝒱ሺ𝑆/𝑅0ሻሽ ∀𝑃 

𝑃ሺ𝐸ത → 𝐸/𝑅0ሻ = ෍ 𝑃ሺ𝑆ҧ → 𝑆𝑖/𝑅0ሻ

𝑁

𝑖=1

 

ቊ
𝑅ሬԦ

𝑀𝐴൫𝑅ሬԦ൯ሬሬሬሬሬሬሬሬሬሬሬሬሬԦቋ

𝐴

⨀ ቊ
𝛺ሬԦሺ𝑆/𝑅0ሻ

𝑉ሬԦሺ𝐴, 𝑆/𝑅0ሻ
ቋ

𝐴

 

𝑅ሬԦ. 𝑉ሬԦሺ𝐴, 𝑆/𝑅0ሻ + 𝑀𝐴൫𝑅ሬԦ൯ሬሬሬሬሬሬሬሬሬሬሬሬሬԦ. 𝛺ሬԦሺ𝑆/𝑅0ሻ 

 
Puissance d’inter efforts 

𝑃൫𝑆𝑖, 𝑆𝑗൯ = 𝑃൫𝑆𝑗, 𝑆𝑖൯ = ቄ𝒯 𝑆𝑖→ 𝑆𝑗
ቅ ⨀൛𝒱൫𝑆𝑗/ 𝑆𝑖൯ൟ 

𝑃𝑖ሺ𝐸ሻ = ෍ ෍ 𝑃൫𝑆𝑖, 𝑆𝑗൯

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

𝑃൫𝑆𝑖, 𝑆𝑗൯ = 𝑃൫𝑆𝑖 → 𝑆𝑗/𝑅0൯ + 𝑃൫𝑆𝑗 → 𝑆𝑖/𝑅0൯ 

Ce n’est pas parce que la liaison est parfaite que la 
puissance 𝑆𝑖 → 𝑆𝑗 ou 𝑆𝑗 → 𝑆𝑖 est nulle… 

Liaison parfaite sans moteur : 𝑃൫𝑆𝑖, 𝑆𝑗൯ = 0 

Sans mouvements relatifs : 𝑃൫𝑆𝑖, 𝑆𝑗൯ = 0 

 

Théorème de l’Energie Cinétique 
TEC 

Enoncé 
𝑑𝑇൫𝑈𝑆𝑖/𝑅𝑔൯

𝑑𝑡
= 𝑃𝑒𝑥𝑡 + 𝑃𝑖𝑛𝑡 

𝑅𝑔 : Référentiel Galiléen 

𝑃𝑒𝑥𝑡 = 𝑃൫𝑈𝑆𝑖
തതതതത → 𝑈𝑆𝑖/𝑅𝑔൯ 

𝑃𝑖𝑛𝑡 = 𝑃𝑖ሺ𝑈𝑆𝑖ሻ 
On isole 𝑈𝑆𝑖 

Utilité 

 

 

Obtention des équations différentielles du mouvement en relation avec les actions exerçant un travail 
C’est l’équivalent du résultat d’une stratégie d’isolement en statique, les effets dynamiques en plus, le 

tout en une seule fois 

Applications classiques 

 

 

• Résolution de l’équation du mouvement (vitesse, position) en régime instationnaire en fonction des 
actions extérieures 

• Détermination de la relation entrée/sortie en efforts en régime stationnaire connaissant la relation 
cinématique 

Hypothèses et conséquences 

 

 

Liaisons parfaites 

⇒ 𝑃𝑑𝑖𝑠𝑠
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 𝑃𝑖𝑛𝑡

𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 + 𝑃𝑒𝑥𝑡
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 0 

𝑃𝑑𝑖𝑠𝑠
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 𝑃𝑖𝑛𝑡

𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 0 si bâti isolé 

Régime stationnaire 

⇒
𝑑𝑇൫𝑈𝑆𝑖/𝑅𝑔൯

𝑑𝑡
= 0 

Masses et inerties négligées 
⇒ 𝑇ሺ𝑆/𝑅0ሻ = 0 

Un comoment 

ቊ
𝑅1
ሬሬሬሬԦ

𝑀1
ሬሬሬሬሬԦ

ቋ
𝑃

⨀ ቊ
𝑅2
ሬሬሬሬԦ

𝑀2
ሬሬሬሬሬԦ

ቋ
𝑃

 

𝑅1
ሬሬሬሬԦ. 𝑀2

ሬሬሬሬሬԦ + 𝑅2
ሬሬሬሬԦ. 𝑀1

ሬሬሬሬሬԦ 
Au même point ! 



Dernière mise à jour MECA 2 
Dynamique 

Denis DEFAUCHY 

19/11/2024 Résumé 

 

Page 8 sur 8 
 

 

 

 

 

 

 

 

 

 

 

 

 

Calcul d’inertie ou de masse équivalente : Exprimer T 

 
Inertie équivalente ramenée à 

l’arbre d’entrée 

𝑇ሺ𝑈𝑆𝑖/𝑅0ሻ =
1

2
𝐽𝑒𝑞

𝑒𝜔𝑒
2 

 

Inertie équivalente ramenée à 
l’arbre de sortie 

𝑇ሺ𝑈𝑆𝑖/𝑅0ሻ =
1

2
𝐽𝑒𝑞

𝑠𝜔𝑠
2 

 

Masse équivalente 

𝑇ሺ𝑈𝑆𝑖/𝑅0ሻ =
1

2
𝑀𝑒𝑞𝑉2 

 

Choix du théorème 

Obtention de 6 équations par isolement 
Equations donnant les actions à travail nul 

Equations différentielles du mouvement sur la/les 
équation(s) de mobilité donnant les actions à travail 

non nul et les lois d’accélérations des pièces 
On obtient toutes les actions du système, et donc la 

loi entrée/sortie en effort (souvent pas plusieurs 
équations) 

Application lourde s’il y a beaucoup de solides 
Difficultés d’applications s’il y a des pertes 

Penser à ne déterminer que l’équation utile au 
problème (ex : Moment en P suivant 𝑧Ԧ) 

PFD 

Equations différentielles du mouvement sur la/les 
équation(s) de mobilité donnant les actions à travail 
non nul et les lois d’accélérations des pièces, en un 

calcul assez simple 
On obtient en particulier la relation entrée/sortie en 

effort 
Impossibilité de déterminer les actions à travail nul 

Très adapté aux problèmes à 1 mobilité 
Fonctionne très bien qu’il y ait peu ou beaucoup de 

solides 

TEC 

Puissance entrante = Puissance sortante ? 

 

𝑃𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑒 = 𝑃𝑠𝑜𝑟𝑡𝑎𝑛𝑡𝑒 
𝑅é𝑔𝑖𝑚𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑛𝑎𝑖𝑟𝑒: 

𝑑𝑇൫𝑈𝑆𝑖/𝑅𝑔൯

𝑑𝑡
= 0 

𝐿𝑖𝑎𝑖𝑠𝑜𝑛𝑠 𝑝𝑎𝑟𝑓𝑎𝑖𝑡𝑒𝑠: 𝑃𝑑𝑖𝑠𝑠
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 𝑃𝑖𝑛𝑡

𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 + 𝑃𝑒𝑥𝑡
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 0 

⇒ 

Considérons un système isolé auquel sont appliqués des actions mécaniques en entrée et en sortie 

Relation en couples/efforts entrée sortie 

 
Relation cinématique e/s : imposée par le mécanisme supposé indéformable -> ne peut évoluer 

Relation 𝐹/𝐶 d’e/s : peut évoluer en fonction du rendement et des accélérations. 
La relation issue du TEC doit conduire à l’obtention de la relation entre efforts/couples connaissant la 

relation cinématique entrée/sortie et non l’inverse, sauf cas particulier : régime stationnaire & 
rendement égal à 1. 

Une manière simple d’obtenir la relation statique e/s d’un mécanisme est de déterminer la relation 
cinématique e/s et d’utiliser le TEC en liaisons parfaites et régime stationnaire. 

Rq : Une résolution cinématique est plus simple qu’une résolution statique ! 

Objectifs des deux théorèmes 
Obtenir des actions de liaisons 

Obtenir des équations différentielles du mouvement liées aux actions entrée/sortie 
 

Notion de rendement – N’a de sens qu’en régime stationnaire ! Dépend de la vitesse… 

 𝜂 =
𝑃𝑠𝑜𝑟𝑡𝑎𝑛𝑡𝑒

𝑃𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑒
 

 𝜂 =
𝑃𝑛

𝑃1
=

𝑃𝑛

𝑃𝑛−1
…

𝑃2

𝑃1
= ෑ 𝜂𝑖

𝑛−1

𝑖=1

 

𝑃𝑑𝑖𝑠𝑠
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = −ሺ1 − 𝜂ሻ𝑃𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑒 

Rq : 𝑃𝑒 + 𝑃𝑑𝑖𝑠𝑠
𝑙𝑖𝑎𝑖𝑠𝑜𝑛𝑠 = 𝜂𝑃𝑒 

Cas d’un réducteur : 
𝜔𝑠

𝜔𝑒
= 𝑘 

𝐶𝑒 & 𝐶𝑠 couples 𝐸 → 𝐸 

𝐶𝑠 = −
η

𝑘
𝐶𝑒 

 
Donc : Pas de 𝜂 dans un eq.dif.mvt 


