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Résumeé

Programme PSI/MP 2022 (LIEN)

Id Compétence développée Connaissances associées
Déterminer les caractéristiques Solide indéformable : — définition ; —repere ; —
B2-10 | d'un solide ou d'un ensemble de équivalence solide/repére ; — volume et masse ; —
solides indéformables. centre d'inertie ; — matrice d'inertie.
Proposer une démarche Graphe de structure. Choix des isolements.
permettant la détermination Choix des équations a écrire pour appliquer le
C1-05 d’une action mécanique principe fondamental de la statique ou le principe
inconnue ou d'une loi de fondamental de la dynamique dans un référentiel
mouvement. galiléen. Théoreme de I'énergie cinétique.
Déterminer les actions Torseurs cinétique et dynamique d’un solide ou d’un
2-08 mécaniques en dynamique dans ensemble de solides, par rapport a un référentiel
le cas ou le mouvement est galiléen. Principe fondamental de la dynamique en
imposé. référentiel galiléen. Energie cinétique. Inertie et
masse équivalentes. Puissance d'une action
. . . mécanique extérieure a un solide ou a un ensemble
Déterminer la loi de ,
. de solides, dans son mouvement par rapport au
C2-09 mouvement dans le cas ou les

efforts extérieurs sont connus.

repere galiléen. Puissance intérieure a un ensemble
de solides. Théoreme de I'énergie cinétique.
Rendement en régime permanent.
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https://www.dropbox.com/s/nia6lgjc5m7lgv5/Programme.pdf?dl=0
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Caractéristiques des solides

Masse

M(E) = fEdm = Lp(M)dV

Centre de gravité ou d’inertie d’un solide
Méthode Intégrale

W4 g Méthode sous-volumes
L m= E=E UEU..UE,
mJg

1 1 1 0G, + m,0G, + -+ m,0G,
X, :ijdm V=~ (yam | 2o =~ [2am | gg = ™06 +m20G, + -+ my0G,
E

mJg mJg my; +my+ -+ my

Sip =cst: Masses négatives pour formes creuses

Remplacer m par V et dm par dV
G est sur les éléments de symétrie volumique

Moments d’inertie d’un solide

Moment d’inertie par rapport au point O 7 A
Ip = szdm = J(x2 +y% +2z%)dm )
s s N
7 . S 14 8
Moment d’inertie par rapport a I'axe A
.
Iy = fd(M)zdm
s
O L
Théoréme de Huygens : - —
X (4) y

IA(S) = IAG(S) + m(S)dZ
= 15(S) = 1,,(5)

Moments d’inertie par rapport aux axes du repére

I, = f(y2 +2z%)dm | Ip, = f(xz +z2)dm | Iy, = f(xz +y*)dm
S S <
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Opérateur d’inertie d’un solide
1(4,8)d = f AMA(UNAM)dm
s

Soit B une base (x5, ys, Zs) liée au solide S étudié et A I'origine du repére

J-(y2 +2z%)dm - fxydm —fxzdm
s s : A —F -E
I(4,5) = —fxydm f(xz +z%)dm —fyzdm =|—F B =D
s s s —E -D C lg,
—fxzdm —fyzdm f(xz +y3)dm
] o
S S S Bs . o | 1%y Igfy vz
Parfois notée I, I;” I
i e .
Théoréme de Huygens généralisé On voit 3 théorémes de Huygens pour le
. apBs déplacement des moments d’inertie
AG = axg + bys + czg = |b autour des axes (4,x;), (4,y;) et (4,z,)
c I¥ = IX + m(b? + ¢?) = I¥ + md?
b*+c*  —ab —ac Iél’ = Ig + mga2 + cz% = 1(3;’ + mdpé
14,9 =1(G,S)+m| —ab a?+c*> —bc ﬁ—li+ 2 1 p2 —Ig+ d%]
—ac —bc  a®+b?lg, 4 =1;+ma ) =1 +md;
oM™ [ b?+c* —ab —ac ] b?+c?  —a'd —a'c’
0G = [b] ;06 = [b’ sA=| —ab  a?+c*  —bc | A =| —a'b  aP+c* b
Clyg 'y —ac —bc  a?+b*lgg —a'c’ =b'c"  a?+b"lg,

1(0',8) =1(0,5) + m(A" — A) — Nécessité de connaitre G pour avoir A et A’

Représentation physique des termes de I(4, S)

Termes diagonaux : lls représentent la « masse » (quantité et distance) a mettre en rotation pour
tourner l'objet autour des 3 axes (4,%.), (4,.) et (4,z;), soit I'inertie autour de ces 3 axes. lls

interviennent dans les équations différentielles du mouvsmen%en rotation. % %
- - T
Soit un cylindre (rayon R, matrice I(G,S) =|—-F B —D| ), roulant autour de
—-E -D C lgg
(A,z;) soumis a la gravité et a la force tangentielle T au contacten A.On a: C6 = —RT

Termes hors diagonaux : Ils représentent la répartition des masses autour des axes (4,x;), (4,y,) et
(4,z]). lls interviennent dans les actions en moment dans les liaisons.

Exemple: TYs Méme A Vs Ve Méme A
F+0 F=0
X3 Xg % A Xxg

lls sont a I'origine de I'apparition de moments lors de leur rotation (w constante ou non) :
Vs

Mz

- Page 3 sur8 . .
Ex. Rotation (4,%;) : E et F (ligne colonne x) sont chacun générateurs de moments sur (4, ys) et (4,%) - cf. équilibrage
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Symétries et forme de la matrice d’inertie — O sur I'élément de symétrie

(0, xs, ys,) . Deux plans de symétrie parmi Axe de révolution
Plan de symétrie (0.%2.92)(0,%2.72) (0.55.72) 0 72
de normale Zg » X5, Ys)\U, Xs, Zg » Vs1 Zs (0,%s)
A —-F 0 A 0 O
1(0,S)=|-F B 0 1(0,S)=|0 B 0
1(0,S
0 0 Clg, 0 _0) ﬁC B 40 )0
Solide sphérique de centre O | Probléme plan (0,%s,y5) :z =0 =lo 4 0]
A 0 O
0 0 C
10,=0 4 0 c o
0 0 A A —F 0 A==+ |z%dm
5 s | 1(0,S)=|-F B 0 T2
A=3lo (autour de 0) 0 0 A+Blg vB(,_2Z)
VB¢

Attention : on ne parle que de forme, les termes peuvent changer d’un point a I'autre

Matrices d’inertie usuelles a savoir retrouver

m ., 2
12(b +c?) 0 0
m
1(G,S) = 0 E(a2 +c?) 0
m._ 5 2
l 0 12(a +b )J%s
R? h?
RZ h2
1(G,S) = — 4=
6,5) 0 m<4 +12>
RZ
0 0 m—
2 g,

Matrice inchangée dans toute base contenant ’axe de révolution

| 2 2
2R | —mR 0 0
=N y z 2
2
\X 0 0 Zmr?
5 I
0 0 O
Masse ponctuelle S; en M; I(My, ) =10 0 0
0 0 0lg,
X% 2 2
oM, = |yi yi© t+z ;xiYiz —XiZ
Z; 10,S) =m;| —xiyi  x°+2z —YiZi
—XZ ~yvizi %+ yd

Bs
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Matrice d’inertie d’un ensemble de solides en un méme point

N N yii+z?  —xy —XiZ I B Bs
I(A, S) = Z I(A, Sl) = Z I(Gi,Si) + m; —XiYi Xiz + Zl'2 —ViZ; ; AGL = |Yi
i=1 i=1 —XiZj -vizi  x2+yd B Zi

Linéarité de I'intégrale

Masses négatives pour formes creuses

Définition
(0,x;) est I'un (des 3) axe(s) principaux d’inertie

A 0 0 de ce solideen O
1(0,S)=|0 B -D A* valeur propre, X, vecteur propre
0 -D C lg En tout point du solide, il existe 3 axes principaux

d’inertie associés aux vecteurs propres

Opérations

Moment d’inertie par rapport a 'axe (4,A) Moment d’inertie par rapport au point A avec I(4,5) =

In(S) = 8.1(4,9)8 ||5"|| =1 A —F -E Tri(AS) _ A+B+C
3 et I(A, S) exprimés dans la méme base —F B =Dl = R
, ~E —-D C g,
Moment d’inertie autour d’un axe (4, x;) avec I(G,S) =

A —-F -—-E

—F B -D| :luzy=I=A+md?avecd Changement de base

—E —-D C lgg 1(0,8)p, = P7'1(0,5)p, P

distance entre (4, ;) et (G, X;) P~1=PT . P matrice de passage de B, a B,

Moment d’inertie d’une masse ponctuelle m; en M autour de I'axe A= (0, Z)

d = \/x;?> + y;% (distance de M a l'axe)

IA =m; dz

Conditions d’équilibrage dynamique

Solide équilibré ? Actions dans les liaisons indépendantes de 8, 0,0 ett
Le solide S de centre de gravité G est équilibré en rotation autour de (0,x.) si :
1:G € (0, xs) : Pas de force centrifuge, tournante
2:(0,x;) est un axe principal d’inertie de S (E = F = 0) en tout point O sur |'axe : Pas de moments
variables dans les liaisons
Remarque : La condition 1 est nécessaire a la condition 2.
Dés que la condition 1 est vérifiée, si la condition 2 est vérifiée en un point de I'axe, elle est vraie sur
tout I'axe
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Cinétique - Dynamique

Cinétique Dynamique
{C(S/Ro)} {D(S/Ro)}
RL(S/Ro) = fE V(M,5/Ro)dm ( Fats/ro = [ Fans/mpam )
E
(A, S/Ry) = fmAV(M,S/RO)dm ig(AvS/RO) = fm/\f(M:S/Ro)dmf
E A E A
V(4,B),3(4,S/Ry) = 6(B,S/R,y) + ABAR.(S/Ry) V(A B),5(A,E/Ry) = 8(B,S/Ry) + ABARL(S/Ry)
— - R4(S/Ry) = MI'(G,S/R
{ Re(S/Ro) = MV(G,S/Ry) } . d 5(‘;( 5//;)) (@SR
G(A,S/Ry) = 1(4,5)0(S/Ro) + MAGAV(A,S/Ry)),  |S(AS/Ry) = TO> + MV(A,S/Ro)AV(G,S/Ry)
Ro A
N N
{C(E/Ry)} = Z{C(Sz/Ro)} {D(E/Ry)} = Z{D(si/RO)}
i=1 i=1
Principe Fondamental de la Dynamique
PFD
PFD Théoréme de la résultante dynamique TRD : MI'(G,E/R,) = Rz_

{D(E/Rg)} = {7 (E - E)} X .
Théoréme du moment dynamique TMD : §(A, E/Ry) = Maz

» 6 équations ___— Actions de liaisons de travail nul

par isolement > Equations différentielles du mouvement + action exercant un travail

Cas particuliers d’un solide indéformable en ...

t dans une direction fixe @ # autour d’un axe (4, 1) de direction % fixe d’inertie J autour de (4, %)

TRD sur u: F = ma TMD sur (A,i) : C=]0
PFD comparable a PFS Remarques Théoréme des actions réciproques
Autant d’équations — Mémes isolements {T(E; » E)} = —{T(E, - E3)}
Simplification du PFD en moment (TMD) sur un axe en G ou A fixe : Y, My pe ¢ A= g(A, S/Ry). U
(w) =uwv'+u'v ; u=d(G,S/Ry) ; v=1u
2 —, _ dd(GS/Ry) — _ dé(GS/Ro)i dii di\ 7 .
6(G,S/Ry).u = — )Ro AU =— d(G,S/Ry). dt)Ro avec dt)Ro = 0 si axe fixe
Masse ponctuelle en i J(iS/R_?) =06(G,S/Ro) = (l Imposer un mouvement dans une liaison
Négliger les masses : R, = Ry = 0-1(M, S) cst- 0 et § simplifiées  revient a imposer une action mécanique
Négliger les inerties : I(G, S) = matrice nulle inconnue. On ne peut imposer effort et
Négliger les deux : {C(S/Ry)} = {D(S/Ry)} = {0} mouvement en méme temps
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Energie - Puissance

Energie cinétique Puissance

Puissance des actions extérieures
P(S - S/Ry) = {73‘—;5}9{17(5/130)} VP

P(E ~ E/Rp) = ) P(S = Si/Ro)
i=1

1(-
T(S/Ry) = EfVZ(M, S/Ry) dm
E

1 1. .
T(S/Ry) = EMVZ(G, S/Ry) + EQ(S/RO). [1(G,$)2(S/Ry)]

1 - 1 - N — l__)
T(S/Ry) = EMVZ(G,S/RO) +§!2(S/R0).G(G,S/RO) { R } O{ 2(S/Ry) }
Mu(R)), ~ V(A S/Ry)),
1 Un comoment . _—
T(S/Ro) = 5{Cs/r,}O{Vs/r, } VP {?} = R.V(A,S/Ry) + Ma(R).(S/Ry)
1 2
5 o[
_A)/Il_P) _1\)/[2_13 Puissance d’inter efforts
T(E/Ry) =ZT(S-/R) R, M, + R,. M, ~
0 — e Au méme point ! P(Si’Sf) P( ) {TS *S]}Q{V(S /Si )}
Mouvements plans P(E) = Z Z P(SL'S)
Translation de vitesse V Rotation 2 d'axe fixe (4, 2) =
Distance de G a I'axe (4,7) : R P(S;,S;) = P(S; = S;/Ro) + P(S; = Si/Ry)

1 1 Ce n’est pas parce que la liaison est parfaite que la
T(S/Ro) = ZMRZ“QZ + EIZGZ‘QZ puissance S; = Sj ou S; — S; est nulle...
Liaison parfaite sans moteur : P(S;,S;) = 0
Sans mouvements relatifs : P(Sl-,Sj) =0

1 2
T(S/Ro) = 5 MV

1
T(S/Ro) = 5 0212,

Translation + Rotation : Somme des Ec des mvt indépendants

Théoréme de I’Energie Cinétique

TEC
Enoncé _
—dT(USi/Rg) = +P Onisole US; Pext = P(US, = USi/Ry)
dt = Fext int o R Py, = P,(US))
R, : Référentiel Galiléen int l L
Utilité

Obtention des équations différentielles du mouvement en relation avec les actions exergant un travail
C'est I’équivalent du résultat d’une stratégie d’isolement en statique, les effets dynamiques en plus, le
tout en une seule fois

Hypothéses et conséquences

. Liaisolr)s. parfaiteil , Régime stationnaire Masses et inerties négligées
lalSOnS — raisons —

= Paiss Pin + Pext ™™ =0 dT(USi/Rg) =>T(S/Ry) =0
pliatsons _ plisisons _ 0 i bati isole >——0— =0

Applications classiques
e Résolution de I'équation du mouvement (vitesse, position) en régime instationnaire en fonction des

actions extérieures
e Détermination de la relation entrée/sortie en efforts en régime stationnaire connaissant la relation

cinématique
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Calcul d’inertie ou de masse équivalente : Exprimer T
Inertie équivalente ramenée a Inertie équivalente ramenée a Masse équivalente
I'arbre d’entrée I'arbre de sortie

1
1 1 T(US;/Ro) = 5 MgqV?
e, 2 s,,2 2
T(US;/Ry) = E/eq We T(US;/Ro) = E]eq Wg

Puissance entrante = Puissance sortante ?

Considérons un systéme isolé auquel sont appliqués des actions mécaniques en entrée et en sortie

dT(US;/R
Régime stationnaire: M =0

dt —
= Pentrante = Psortante

T : . pliaisons _ pliaisons liaisons __
Liaisons parfaites: Py;ss =P + Pt =0

Notion de rendement — N’a de sens qu’en régime stationnaire ! Dépend de la vitesse...

Psortante w
— _Sortante - Cas d’un réducteur : —= =k
Pentrante éligl;sons = _(1 - M) Pentrante _ Qe
B B P, ﬁ Rq:Pe+PéliglésonS:nPe Ce&CSCOUpI.ﬁSE_)E
n=—= = Ni = ——
Py Py P 1 Donc : Pas de n dans un ea.dif.mvt Cs i Ce

Relation en couples/efforts entrée sortie

Relation cinématique e/s : imposée par le mécanisme supposé indéformable -> ne peut évoluer
Relation F /C d’e/s : peut évoluer en fonction du rendement et des accélérations.

La relation issue du TEC doit conduire a I'obtention de la relation entre efforts/couples connaissant la
relation cinématique entrée/sortie et non I'inverse, sauf cas particulier : régime stationnaire &
rendement égal a 1.

Une maniére simple d’obtenir la relation statique e/s d’un mécanisme est de déterminer la relation
cinématique e/s et d’utiliser le TEC en liaisons parfaites et régime stationnaire.

Rq : Une résolution cinématique est plus simple qu’une résolution statique !

Choix du théoréeme

Objectifs des deux théorémes
Obtenir des actions de liaisons
Obtenir des équations différentielles du mouvement liées aux actions entrée/sortie

PFD TEC
Obtention de 6 équations par isolement Equations différentielles du mouvement sur la/les
Equations donnant les actions a travail nul équation(s) de mobilité donnant les actions a travail
Equations différentielles du mouvement sur la/les non nul et les lois d’accélérations des pieces, en un

équation(s) de mobilité donnant les actions a travail calcul assez simple

non nul et les lois d’accélérations des pieces On obtient en particulier la relation entrée/sortie en

On obtient toutes les actions du systeme, et donc la effort
loi entrée/sortie en effort (souvent pas plusieurs Impossibilité de déterminer les actions a travail nul

équations) Trés adapté aux problémes a 1 mobilité

Application lourde s’il y a beaucoup de solides Fonctionne trés bien qu’il y ait peu ou beaucoup de

Difficultés d’applications s’il y a des pertes Page 8 sur 8 solides

Penser a ne déterminer que I’équation utile au
probléme (ex : Moment en P suivant Z)



